Projective toric varieties of codimension 2 with maximal Castelnuovo–Mumford regularity

نویسندگان

چکیده

The Eisenbud–Goto conjecture states that reg X ≤ deg − codim + 1 for a nondegenerate irreducible projective variety over an algebraically closed field. While this is known to be false in general, it has been proven several special cases, including when toric of codimension 2. We classify the varieties 2 having maximal regularity, is, which equality holds bound. also give combinatorial characterizations arithmetically Cohen–Macaulay regularity characteristic 0.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformations of Codimension 2 Toric Varieties

We prove Sturmfels’ conjecture that toric varieties of codimension two have no other flat deformations than those obtained by Gröbner basis theory.

متن کامل

On Simplicial Toric Varieties of Codimension 2

We describe classes of toric varieties of codimension 2 which are either minimally defined by codim V +1 binomial equations over any algebraically closed field, or set-theoretic complete intersections in exactly one positive characteristic .

متن کامل

Syzygies of Projective Toric Varieties

We study the equations defining a projective embedding of a toric variety X using multigraded Castelnuovo-Mumford regularity. Consider globally generated line bundles B1, . . . , Bl and an ample line bundle L := B ⊗m1 1 ⊗ B2 2 ⊗ · · · ⊗ Bl l on X . This article gives sufficient conditions on mi ∈ N to guarantee that the homogeneous ideal I of X in P := P (

متن کامل

A Codimension Theorem for Complete Toric Varieties

Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we study the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous elements that don’t vanish simultaneously on X. Introduction In this paper, X will denote a complete toric variety of dimension n. We will work over C, so that the torus of X is (C). The dual lattices will be de...

متن کامل

Self-dual projective toric varieties

Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2023

ISSN: ['1873-1376', '0022-4049']

DOI: https://doi.org/10.1016/j.jpaa.2022.107162